
Extensible
802.11 Packet

Flinging

ShmooCon 2007
Joshua Wright, Aruba Networks

Mike Kershaw, Aruba Networks

Introduction

• Overview, agenda

• What are we talking about?

• History of 802.11 packet injection

• Introducing LORCON

• LORCON applications and uses

• Closing and questions

Your Speakers

• Joshua Wright, Aruba Networks

– Author of a bunch of one-off tools (Asleap,
coWPAtty, file2air, bluepinning, jrockets)

– Wireless security research for Aruba

• Mike Kershaw, Aruba Networks

– Wrote Kismet, WiSpy for Linux

– Aruba product security analyst

Our Agenda

• Much of the intricacies of wireless
networking has been unexplored

– There's plenty of good stuff to find still

• Introducing a framework for
experimentation on 802.11 networks

• You should already know:

– Basic programming concepts

– Knowledge of C is helpful

– General idea of how IEEE 802.11 works

What is 802.11 Packet Injection?

• Most wireless drivers were not written to
send 802.11 frames from userspace

• 802.11 packet injection (rawtx) sends
802.11 frames without driver molestation

• Not the same as standard packet
injection (manipulation at layer 2+)

FC Dur. Addr. 1 Addr. 2 Addr. 3
Seq.
Ctrl

QoS
Ctrl

2 2 6 6 6 2 2

Bytes

Dest. Source Type

6 6 2

Bytes

WEP
Header

Data

TKIP/CCMP

Header

Mgmt.

Frame

Options

Why Do We Need This?

• Conventional interoperability testing has
limited scope and focus
– Making sure everyone plays nice together

• What happens when people don't play
nice together?

• What kind of attacks are possible?

• What kind of defenses can be discovered
through attack analysis?

• Can we improve performance and
reporting of network events?

Brief History
of 802.11
Packet

Injection

In the Beginning…

• libradiate - Mike Schiffman (7/2002)

– Hack of HostAP drivers with userspace packet crafting
similar to libnet, not maintained

• Airjack - Mike Lynn

– Drunken Defcon release 8/2002

– New driver written to do bad things to good networks,
not maintained

• Scapy adds support for limited drivers (3/2004)

• Aireplay hacks up modern hostap (6/2004)

• KoreK releases Chopchop using wlan-ng drivers
(9/2004)

More Drivers, Please

• Feb. 2005 - each 802.11 tool needing
rawtx uses a different driver

– Ended up dedicating a card to each app

• Driver changes come out, apps are all
broken and require new patches

• New drivers and cards, but no app
support

• Everyone has their own patches too…

WAIT … THIS SUCKS

The Revelation
<jwright> I'm sick of re-writing tools each

time we figure out raw TX on a new driver.

<dragorn> Yeah

<jwright> We're being stupid about this. Why

don't we create an abstraction layer for

developers that handles all the card setup

nonsense.

<dragorn> We can use function pointers.

<jwright> Yeah!

<dragorn> We can call it LORCON, I'll setup a

SVN repository.

We decided to fix this problem with a
smarter solution: LORCON

Introducing
LORCON

What is LORCON?
• Framework for experimentation on 802.11

wireless networks

• Abstraction mechanism that handles driver
oddities for the developer

• You work on features, we handle driver
ridiculousness

• C library, simple API for crafting and
transmitting 802.11 frames

• User identifies their driver when they run your
tool, not tied to any specified card/driver

You write apps given a set of generic or
specific card capabilities, we handle the rest

LORCON Features
• Driver capability differentiation

• Abstraction from driver and OS dependencies

• 802.11 packet crafting capabilities

• GPLv2, lightweight footprint

• Driver support for:
– wlan-ng, Hostap, Airjack, Prism54, madwifi-old,

madwifi-ng, rt2500, rt2570, rt73, rt61, rtl8180,
Airpcap

• "Give me a frame and I'll transmit it"
– Within the user's card hardware constraints

– No preconceived notion of "good" packets

LORCON for the Impatient
tx80211_init(…); // Initialize context for

// the interface

tx80211_initpacket(…); // Initialize context for
// a packet

tx80211_setfunctionalmode(…); // Change the card mode
// to the desired function

tx80211_setchannel(…); // Switch to a given
// channel

tx80211_open(…); // Open the interface

tx80211_txpacket(…); // Transmit the packet

tx80211_close(…); // Cleanup

Identifying the Driver
int
tx80211_resolvecard(const char *in_str);

#include <tx80211.h>

int drivertype = INJ_NODRIVER, c;

while ((c = getopt(argc, argv, "d:")) != EOF) {

switch(c) {

case 'd':

drivertype = tx80211_resolvecard(optarg);

break;

}

if (drivertype == INJ_NODRIVER)

fprintf(stderr, "Driver name not recognized.\n");

LORCON supported driver idenitfier>0

Driver name not recognizedINJ_NODRIVER

User-supplied driver descriptionin_str

User specifies case-agnostic driver name ("madwifing"), resolves if
driver is suppored by LORCON or not. Allows your app to support

new cards as they are added to LORCON.

Initialization

Injection type not supportedTX80211_ENOSUCHINJ

No error, initialization successTX80211_ENOERR

LORCON driver indicator value returned by
tx80211_resolvecard()injector

Interface nameifname

LORCON per-interface contextin_tx

Initializes the handler functions, capabilities

int
tx80211_init(tx80211_t *in_tx, const char *ifname, int injector);

tx80211_t in_tx;

char *iface = argv[1];

char *drivertype = argv[2];

if (tx80211_init(&in_tx, iface, tx80211_resolvecard(drivertype))

!= TX80211_ENOERR)

return -1

Driver Capabilities

No driver capabilities foundReturn 0

Bitmask of capabilitiesReturn >= 0

LORCON per-interface contextin_tx

Returns capability bitmask for the initialized driver. Optionally
follows tx80211_init(). List of capabilities are defined in the man
page. Use this feature to identify if the driver supports what your

application needs to do (specific frame types, header field controls,
transmission rate manipulation, modulation mechanisms, etc).

int
tx80211_getcapabilities(tx80211_t *in_tx);

/* TX80211_CAP_FRAG indicates the initialized driver allows

us to preserve the MOREFRAG bit and the fragment number

field */

if ((tx80211_getcapabilities(&in_tx) & TX80211_CAP_FRAG) == 0)

fprintf(stderr, "Sorry, driver does not support "

"manipulating fragmentation fields.\n");

Operating Modes

Error setting functional mode< TX80211_ENOERR

No error, mode change successfulTX80211_ENOERR

Functional mode:
TX80211_FUNCMODE_RFMON
TX80211_FUNCMODE_INJECT

TX80211_FUNCMODE_INJMON

in_fmode

LORCON per-interface contextin_tx

Configures the card based on how your application needs to use it.
Must follow tx80211_init().

int
tx80211_setfunctionalmode(tx80211_t *in_tx, int in_fmode);

if (tx80211_setfunctionalmode(&in_tx, TX80211_FUNCMODE_INJMON)) {

fprintf(stderr, "Error setting functional mode: %s\n",

tx80211_geterrstr(&in_tx));

return -1;

}

Opening the Interface

Error opening interface for rawtx< TX80211_ENOERR

No error, mode change successfulTX80211_ENOERR

LORCON per-interface contextin_tx

Opens and binds a socket for packet transmission. Must follow
tx80211_setfuncmode() before opening the interface. Will UP a

downed interface for the user.

int
tx80211_open(tx80211_t *in_tx);

if (tx80211_open(&in_tx)) {

fprintf(stderr, "Error opening interface %s: %s\n",

in_tx->ifname, tx80211_geterrstr(&in_tx));

return -1;

}

Packet Initialization

LORCON per-packet contextin_packet

Initializes the per-packet context. Must be called before sending the
identified packet context with tx80211_txpacket().

tx80211_packet_t is independent of the per-interface context
tx80211_t to accommodate rapidly transmitting different packets.

void
tx80211_initpacket(tx80211_packet_t *in_packet);

/* We need to send data packets and deauth packets rapidly, so

* we have two packet contexts to use for transmission.

*/

tx80211_packet_t in_packet_deauth;

tx80211_packet_t in_packet_data;

tx80211_initpacket(&in_packet_deauth);

tx80211_initpacket(&in_packet_data);

Transmitting Packets

LORCON per-packet contextin_packet

Partial frame transmittedTX80211_EPARTTX

0 bytes transmittedTX80211_ENOTX

Number of bytes transmittedReturn >0

LORCON per-interface contextin_tx

Transmits the contents at in_packet->packet for in_packet->plen bytes.

int
tx80211_txpacket(tx80211_t *in_tx, tx80211_packet_t *in_packet);

uint8_t packet[] = "\xd4\x00\x00\x00\x00\x13\xce\x55\x98\xef";

in_packet.packet = packet;

in_packet.plen = 10;

if (tx80211_txpacket(&in_tx, &in_packet) != 10)

fprintf(stderr, "Error: %s\n", tx80211_geterrstr(in_tx));

Closing Up

Error closing< TX80211_ENOERR

No error, close successfulTX80211_ENOERR

LORCON per-interface contextin_tx

Closes the interface following tx80211_open(). Should call before
exiting your application.

int
tx80211_close(tx80211_t *in_tx);

if (tx80211_close(&in_tx) != TX80211_ENOERR) {

fprintf(stderr, "Error closing the interface %s: %s\n",

in_tx->ifname, tx80211_geterrstr(&in_tx));

return -1;

}

Simple LORCON Application
#include <tx80211.h>

int main(int argc, char *argv[]) {

tx80211_t tx;

tx80211_packet_t txp;

uint8_t packet[] = "\xc4\x00\xff\x7f\x00\x13\xce\x55\x98\xef";

/* argc sanity check argv[1] is the interface, argv[2] is the driver name */

if (tx80211_init(&tx, argv[1], tx80211_resolvecard(argv[2])) != TX80211_ENOERR)

die(&tx);

if ((tx80211_getcapabilities(&tx) & TX80211_CAP_CTRL) == 0)

die(&tx);

if (tx80211_setfunctionalmode(&tx, TX80211_FUNCMODE_INJMON) != TX80211_ENOERR)

die(&tx);

if (tx80211_open(&tx) != TX80211_ENOERR)

die(&tx);

tx80211_initpacket(&txp);

txp.packet = packet;

txp.packet = sizeof(packet); /* :P */

if (tx80211_txpacket(&tx, &txp) < txp.plen)

die(&tx);

tx80211_close(&tx);

return 0;

}

LORCON Internals

• tx80211_init() sets up function pointers for the
identified driver type

• tx80211_open(), etc. can be different for each
driver type

• As new drivers are added, new functions are built
as needed

struct tx80211 {

/* trimmed for brevity */

int (*open_callthrough) (struct tx80211 *);

int (*close_callthrough) (struct tx80211 *);

int (*setfuncmode_callthrough) (struct tx80211 *, int);

int (*setchan_callthrough) (struct tx80211 *, int);

int (*txpacket_callthrough) (struct tx80211 *,

struct tx80211_packet *);

};

typedef struct tx80211 tx80211_t;

Special Notes
• MADWIFI-NG is it's own special beast

– If VAP is in monitor mode, we use it

– If you pass master interface, we destroy all VAP's
and create "lorcon0"

• Intel Centrino 2200/2915 and 2100 have
firmware restrictions preventing rawtx
– Non-mainline 3945 driver appears to have hacked

rawtx in, will add support soon

• For a good USB 802.11 dongle, we recommend
the rt73 chipset
– Belkin Wireless G USB #F5D7050

• We strive to have a complete and useful man
page

LORCON
Packet
Crafting

Creating 802.11 Frames
• LORCON transmits a u8 array of data

– You can specify your own frames if you want

• Alternative: LORCON Packet Forging
– Simple interface for forging frames

• Still under development, feedback desired

lcpa_metapack_t *metapack;

tx80211_packet_t txpack;

uint8_t txmac[6];

uint8_t targetmac[] =

"\xff\xff\xff\xff\xff\xff";

metapack = lcpa_init();

tx80211_initpacket(&txpack);

srand(time(NULL));

lcpf_randmac(txmac, 1);

lcpf_rts(metapack,

targetmac,

txmac,

0x00, /* fcflags */

0x00); /* duration */

lcpa_freeze(metapack, &txpack);

lcpa_free(metapack);

tx80211_txpacket(in_tx, &txpack);

What happens when you send RTS frames to the broadcast address?

LORCON
Applications

and Uses

File2air

• Inject arbitrary binary files as 802.11 frames

• Useful for one-off testing without writing code

• Includes several sample packets

• Useful with Wireshark's Export Packet Bytes

– File � Export � Selected Packet Bytes

• Can fragment payloads and spoof sequence
numbers based on driver capabilities

• Override addresses with command-line args

http://802.11ninja.net/code/file2air-current.tgz

l2ping80211

• Verifies reachability of target wireless station
using various L2 tests

– Regardless of encryption in use

• I can't think of a use for this, why would we
need to repeatedly check the responsiveness of
a target host?

Sample application included with LORCON; "make l2ping80211"

LORCON on the Nokia 770

AirPWN

• Bryan Burns, Defcon 12

• AirPWN 0.50c before LORCON

– Supports HostAP driver only (802.11b only)

– Requires 2 cards to operate (listen, transmit)

– Only runs on Linux

• AirPWN after LORCON

– Supports all cards LORCON supports, and all
modulation mechanisms

– Only requires one card

– Removed ~100 lines of socket code

– Runs on … Windows?

AirPWN on Windows

• Airpcap: Commercial adapter

– TX support in driver beta, to be released
"real soon now"

http://802.11ninja.net/code/airpwn-windows.zip

AND NOW FOR A

LITTLE GOATSEA

Wireshark WiFi Injection Patch

• Patch to Wireshark by Asier Martínez
– Select 802.11 frame, r-click Packet � Send

WiFi Frame

– Use hex editor to modify, send repeatedly

http://axi.homeunix.org/wishark_patch.html

What happens
when the WPA key
length is 0xffff?

Airbase
• Collection of tools for manipulating wireless

networks (rock on Johnycsh!)

• Fuzzers, accelerated WEP cracking, frame
manipulation tools, oh my!

http://www.802.11mercenary.net/downloads/

Metasploit Framework

metasploit.org

Ruby + LORCON

• Ruby module from the Metasploit Framework
require "Lorcon"

packet=[0xc4,0x00,0xff,0x7f,0x00,0x13,0xce,0x55,0x98,0xef].pack('C*')

puts "Initializing LORCON using wifi0 and madwifing driver"

tx = Lorcon::Device.new('wifi0', 'madwifing', 1)

puts "Changing channel to 11"

tx.channel = 11

Send the frame 500 times with no inter-frame delay

sa = Time.now.to_f

tx.write(packet, 500, 0)

ea = Time.now.to_f - sa

puts "Sent 500 packets in #{ea.to_s} seconds"

$ sudo ruby testlorcon.rb

Initializing LORCON using wifi0 and madwifing driver

Changing channel to 11

Sent 500 packets in 0.00940299034118652 seconds

Kismet + LORCON

• Kismet newcore server and client plugin

• Defined new capture soruce type "lorcon"
for rfmon+rawtx

• Decloaks SSIDs automatically

– Locks channel hopper

– Broadcast deauth to all stations

– Waits for a stations to rejoin

– Restored channel hopping

• Can do many other things, good and bad

How Do I get LORCON?

• http://802.11ninja.net/lorcon

– Trac wiki, bug database, documentation, slides

• Most current code: "svn co
http://802.11ninja.net/svn/lorcon"

• lorcon@802.11ninja.net

– Yes: Can we get XXX driver support?

– Yes: Here's a patch for something I wanted

– Yes: I'm really into writing docs and I want to help
out!

– No: Can you send me the source to Airjack?

– No: How can I get free Internet access?

Why Should I Use LORCON?

• Simplifies your code (no more driver
nonsense)

• Makes your app useful longer than a
single given driver
– When IEEE 802.11n drivers come out with

rawtx support, we'll add them to LORCON

– Now your app supports 802.11n with no code
changes and without even a relink

– When IEEE 802.11y drivers come out …

• Stable, simple API; short learning curve

• We'll pimp your app on 802.11ninja.net

Next Steps

• LORCON on more embedded platforms

– LORCON on your phone!

• Support for BSD

– If you know how rawtx can/does work on
BSD, please see us

• Complete LORCON Packet Forge API

• Formal Ruby interface

• Ongoing driver additions

• Massive chaos and mayhem

FIN

• Thanks to
– Jon Ellch, HDM, Dave Maynor, Bryan Burns,

Christophe Devine, KoreK, Laurent Butti,
Asier Martínez, Raul Siles, Mike Lynn,
Shmoocon

Live in or willing to relocate to San Jose/Sunnyvale CA and want to
break wireless stuff for a living? Please see Mike or Josh.

Joshua Wright
jwright@arubanetworks.com

jwright@hasborg.com

Mike Kershaw
mkershaw@arubanetworks.com
dragorn@kismetwireless.net

Angry cookie photograph by Mike Kershaw

