

Essential Crypto for Pen Testers (Without the Math)

Joshua Wright, InGuardians Senior Security Analyst josh@inguardians.com

Webcast – April 26 2010

Outline

Introduction

- Essential crypto skill development
- Applying crypto analysis
- Summary and conclusion

 Many pen testers skip over crypto in assessments

-Math, algorithms, more math, etc.

- With some essential skills, you can attack cryptographic mistakes
 - -Expanding your skill repertoire

-New opportunities to exploit systems

- It is uncommon to identify crypto flaws in widespread protocols (TLS, PGP, etc)
- There is a lot more crypto to attack out there
 - Less-common but critical standards
 - Proprietary applications
 - Other wireless protocols
 - Removable storage drives
 - Custom web-app session cookies, etc.
 - Database field encryption

Outline

- Introduction
- Essential crypto skill development
 - Applying crypto analysis
 - Summary and conclusion

Stream Ciphers

- Encrypt one bit at a time
- Encrypted length is the same as the plaintext
 - 63 bytes ciphertext means 63 bytes plaintext
- Examples include RC4, A5/1, E0
- Cipher generates a keystream
- Keystream is XOR'd with plaintext to produce ciphertext
 - -Sorry, that was a little math

Critical Evaluation: IV Handling?

- Law of Stream Ciphers: Can never use the same key twice
- We accomplish this by mixing a perpacket value with each key
 - Initialization Vector (IV)
 - IV is not a secret (usually sent in packet)
- Must rotate key before IV's repeat

secret

IV

per-packet key

Block Ciphers

- Encrypt data one fixed-length block at a time
- Must pad the last few bytes to an even block length
 - -8-byte block length with 64 bytes
 ciphertext is 57 64 bytes plaintext
- Examples include: AES, DES, 3DES, Blowfish

- Block ciphers introduce a "mode"
 - Some block cipher modes provide better security than others
- Any block cipher can be used with various modes (AES-CTR, 3DES-CBC)
 - Key Vendor Question: "What block cipher mode do you use?"
- We'll look at ECB, CBC modes

ECB Mode

- Electronic Cookbook Mode
- Encrypts each block with the same key
 - Critical issue: same plaintext blocks encrypt to matching ciphertext blocks
 - Attacker can identify repetitious blocks of plaintext
 - Commonly an issue with lots of 0's
- Reveals interesting content about plaintext

\$ xxd -p aes-256-ecb-encrypted-secrets.bin

b2e5d275b8a9d7fd05ee7b58a1e242f1890a6a8b763c4ddb97f642c5f7d8 edb5b2e5d275b8a9d7fd05ee7b58a1e242f1f04eab49bff6e46fb8b5fd99

Levi Johnston?

AES-ECB-256 Encrypted Unencrypted

CBC Mode

- Cipher Block Chaining Mode
- Encrypt a block using the key
- Encrypted block is then XOR'd with the next plaintext before encrypting
- Adds variety to each block
 - Solves the ECB same-plaintext = sameciphertext problem
- What about the first block then?

CBC IV

- CBC uses an IV as the first "plaintext" block to encrypt
 - Encrypted IV is XOR'd with first byte of real plaintext
 - IV "should" not repeat
- Repeating IV reveals plaintext patterns

Three encrypted packets – what's the problem here?

\$ openssl enc -aes-128-cbc -in packet1 -K \$KEY -iv \$IV | xxd -p 0a940bb5416ef045f1c39458c653ea5ad172ce43bf147f4dffa206c1d372ddca \$ openssl enc -aes-128-cbc -in packet2 -K \$KEY -iv \$IV | xxd -p 06cf727e3dc3bd52ce98916d71dd233bfc60a567fea20a5e3191ab952c4a6491 \$ openssl enc -aes-128-cbc -in packet3 -K \$KEY -iv \$IV | xxd -p 0a940bb5416ef045f1c39458c653ea5ad172ce43bf147f4dffa206c1d372ddca

- At the pen-test summit, we'll get into more detail
 - Also covering CTR mode, common issues in stream and block ciphers
- We're short on time today, so let's jump into an analysis example

Outline

- Introduction
- Essential crypto skill development
- Applying crypto analysis
 - Summary and conclusion

Network Traffic Sample

Packet 1	591£5377	5cd731c7	9bc02d08	8bac34
Packet 2	31b98481	el		
Packet 3	eb3c6307	1cb1cdc4	a3e1a69c	6c3f71f9
Packet 4	d8a3390c	fb48aa61		
Packet 5	591£5377	5cd731c7	9bc02d08	8bac34
Packet 6	204f0eb3	fl		

- Proprietary wireless protocol traffic
- Header information removed, packets shortened for space, simplicity
- We need to evaluate this implementation

pcaphistogram

- Is this traffic encrypted at all?
- Histogram: plot frequency of each byte of encrypted payload
 - Encrypted data should have roughly equal distribution of byte values
- \$ pcaphistogram customer2.dump | gnuplot
- \$ display customer2.png

- Frame lengths 15, 5, 8 bytes – Indicative of a stream cipher
- Some repetition in encrypted packets
 - Lack of unique IV for each packet
 - That's a big no-no, especially with stream ciphers
- Commutative property of XOR

P1 XOR P2 = C1 XOR C2

Stream Cipher IV Collision

- Known-ciphertext attack opportunity
- Able to create a packet with text we specify and observe the encrypted counterpart

Stream Cipher IV Collision

- We could generate our own traffic for this system
- Identified corresponding ciphertext

plainknown = (0x80,	0x11,	0x39,	0xa5,	0x00,	0x00,	0x00,	0x00,			
	0xff,	0xff,	0xff,	0xff,	0x00,	0x44,	0x00,	0x43)			
cipherknown = (0x59,	0x1f,	0x53,	0x77,	0x5c,	0xd7,	0x31,	0xc7,			
	0x9b,	0xc0,	0x2d,	0x08,	0x8b,	0xac,	0x34,	0x26);			
cipherunknown = (0xeb,	0x3c,	0x63,	0x07,	0x1c,	0xb1,	0xcd,	0xc4,			
	0xa3,	0xel,	0xa6,	0x9c,	0x6c,	0x3f,	0x71,	0xf9);			
<pre>for i in xrange(0,len(plainknown)):</pre>											
cipxor = cipherknown[i] ^ cipherunknown[i]											
print("%02x"%(cipxor ^ plainknown[i])),											
print("")											

C:\dev>python ivcoltest.py 32 32 09 d5 40 66 fc 03 c7 de 74 6b e7 d7 45 9c

Outline

- Introduction
- Essential crypto skill development
- Applying crypto analysis
- Summary and conclusion

Conclusion

- Useful to build skill set for basic crypto analysis
 - -Very little math required
- Stream ciphers and IV reuse
- Block ciphers and modes
- Walkthrough IV collision and known plaintext attack

Crypto w/o Math at the Summit ...

- More critical crypto skill development
- Tools you can use!
 - Stuff from my previously-unreleased stash and other public tools
 - More data visualization examples
- More attack examples
 - Database storage, HTTP cookies, standardsbased protocols
- Critical questions for your vendor's crypto implementation
- Recommendations where to go from here!

Questions?

- Pen Test Summit 2010, June 14-15
 Baltimore, MD (Hilton across from Camden)
- Another awesome line-up this year
 - Vinnie Liu, Dan Kaminsky, HD Moore, Jonathan Ham, Paul Asadoorian, Jeremiah Grossman, Joshua Wright, Larry Pesce, Jabra, Johnny Cache and more!
- Come for the content, attendee interaction, networking and more!

9 days left for early-bird sign-up savings of \$350! www.sans.org/pen-testing-summit-2010