I EEEEEE==E————D——————

Essential Crypto for Pen
Testers (Without the Math)

Joshua Wright, InGuardians
Senior Security Analyst
josh@inguardians.com

Webcast — April 26 2010

Outline

Introduction
e Essential crypto skill development
e Applying crypto analysis
e Summary and conclusion

Crypto and Pen Testing

e Many pen testers skip over crypto
In assessments

—Math, algorithms, more math, etc.

e With some essential skills, you can
attack cryptographic mistakes
— Expanding your skill repertoire
—New opportunities to exploit systems

e It is uncommon to identify crypto flaws
in widespread protocols (TLS, PGP, etc)

e There is a lot more crypto to attack out
there
— Less-common but critical standards
— Proprietary applications
— Other wireless protocols
— Removable storage drives
— Custom web-app session cookies, etc.
— Database field encryption

What We're Targeting

Outline

e Introduction

Essential crypto skill development
e Applying crypto analysis
e Summary and conclusion

Stream Ciphers

e Encrypt one bit at a time

e Encrypted length is the same as the
plaintext

— 63 bytes ciphertext means 63 bytes
plaintext

e Examples include RC4, A5/1, EO
e Cipher generates a keystream

e Keystream is XOR'd with plaintext to
produce ciphertext

— Sorry, that was a little math

&
Critical Evaluation: IV Handling

e Law of Stream Ciphers: Can never use
the same key twice

e \We accomplish this by mixing a per-
packet value with each key
— Initialization Vector (IV)

—IV is not a secret (usually sent in
packet)

e Must rotate key before IV's repeat

IV | + secret = per-packet key

Block Ciphers

e Encrypt data one fixed-length block
at a time

e Must pad the last few bytes to an
even block length

—8-byte block length with 64 bytes
ciphertext is 57 — 64 bytes plaintext

e Examples include: AES, DES, 3DES,
Blowfish

Block Cipher Modes

e Block ciphers introduce a "mode”

— Some block cipher modes provide better
security than others

e Any block cipher can be used with
various modes (AES-CTR, 3DES-CBC)

— Key Vendor Question: "What block
cipher mode do you use?”

o We'll look at ECB, CBC modes

ECB Mode

e Electronic Cookbook Mode

e Encrypts each block with the same key

— Critical issue: same plaintext blocks encrypt
to matching ciphertext blocks

— Attacker can identify repetitious blocks of
plaintext

— Commonly an issue with lots of 0's

e Reveals interesting content about
plaintext

S xxd -p aes-256-ecb-encrypted-secrets.bin
02e5d275b8a9d7fd05ee7b58ale242£1890a6a8b763c4ddb97£642c5£7d8
edb5b2e5d275b8a9d7£d05ee7b58ale242f1£f04eabd49bff6ed6fb8b5£d99

Copyright 2010 InGuardians, Inc.

Levi Johnston?

Unencrypted AES-ECB-256 Encrypted

Copyright 2010 InGuardians, Inc.

CBC Mode

e Cipher Block Chaining Mode
e Encrypt a block using the key

e Encrypted block is then XOR'd with the
next plaintext before encrypting

e Adds variety to each block

— Solves the ECB same-plaintext = same-
ciphertext problem

e \What about the first block then?

CBC IV

e CBC uses an 1V as the first "plaintext”
block to encrypt

— Encrypted 1V is XOR'd with first byte of
real plaintext

—IV "should" not repeat
e Repeating IV reveals plaintext patterns

Three encrypted packets — what's the problem here?

$ openssl enc -aes-128-cbc -in packetl -K $KEY -iv $IV | xxd -p
0a940bb5416e£f045£f1c39458c653eabadl’/2ced3bfld7f4dffa206cld372ddca
$ openssl enc -aes-128-cbc -in packet2 -K $KEY -iv $IV | xxd -p
0Obctf/727e3dc3bd52ce98916d71dd233bfco0abe7fea20a5e3191ab952c4a6491
$ openssl enc -aes-128-cbc -in packet3 -K $KEY -iv $IV | xxd -p
0a940bb5416e£f045£f1c39458c653eabadl’/2ced3bfl4d7f4dffa206cld372ddca

Copyright 2010 InGuardians, Inc.

More At The Summit

e At the pen-test summit, we'll get
into more detalil

—Also covering CTR mode, common
issues in stream and block ciphers

e \We're short on time today, so let's
jump into an analysis example

Outline

e Introduction

e Essential crypto skill development
Applying crypto analysis

e Summary and conclusion

Network Traffic Sample

Packet1 | 591£5377 bcd731c’/7 9bc02d08 8bac3i4
Packet2 | 31098481 el

Packet3 [eb3c6307 1lcblcdcd a3elaoc9c 6¢3£71£9
Packet4 | dB8a3390c fb4d8aaocl

Packet5 | 591£5377 5cd731c’/7 9bc02d08 8bac34
Packet6 | 204f0eb3 f1l

e Proprietary wireless protocol traffic

e Header information removed, packets
shortened for space, simplicity

e We need to evaluate this implementation

Copyright 2010 InGuardians, Inc.

pcaphistogram

o Is this traffic encrypted at all?

e Histogram: plot frequency of each byte
of encrypted payload

— Encrypted data should have roughly equal
distribution of byte values

$ pcaphistogram customer2.dump | gnuplot
$ display customer2.png

Packet FPayload Histogram for customerg2. dump

. . . . g Lots more

2088 -

_ason | : crypto

[a]
£ zpaa - °

| | visualization
e o 1| toOIS at the

Sea -

2 ' ' ' ' ' summit!

aa ag &4 L [=15] ta
I Eyte YWalues _i

Evaluating the Data

e Frame lengths 15, 5, 8 bytes
— Indicative of a stream cipher

e Some repetition in encrypted packets
— Lack of unique IV for each packet

— That's a big no-no, especially with
stream ciphers

e Commutative property of XOR

P1 XOR P2 = C1 XOR C2

Stream Cipher IV Collision

o Known-ciphertext attack opportunity

e Able to create a packet with text we specify
and observe the encrypted counterpart

Erll?;?t?én Plaintext & Keystream — Ciphertext
@ DQC?;”QSLn Ciphertext | €D | Keystream | = Plaintext

Comygrtzative (kgg\:vrﬁa;tgc(t) D | Ciphertext | — Keystream
(4 Puned é’.BEZ?tVeVQt P | Keystream | = | Plaintext FTW!

Copyright 2010 InGuardians, Inc.

Stream Cipher IV Collision

e \We could generate our own traffic for
this system

e Identified corresponding ciphertext

plainknown = (O0x80, Ox11, 0x39, Oxab, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Oxff, Oxff, 0x00, 0x44, 0x00, 0x43)

cipherknown = (O0x59, Ox1f, 0x53, 0x77, 0xb5c, 0xd7, 0x31, 0Oxc7,
O0x9b, Oxc0O, 0Ox2d, 0x08, 0x8b, Oxac, 0x34, 0x26);

cipherunknown = (Oxeb, 0O0x3c, 0x63, 0x07, Oxlc, Oxbl, Oxcd, 0xc4,

Oxa3, Oxel, Oxa6, 0x9c, Ox6c, 0x3f, 0x71, 0xf9);
for 1 in xrange (0, len(plainknown)) :
cipxor = cipherknown[i] ~ cipherunknown [i]
print ("%02x"% (cipxor ~ plainknown[i])),

print ("")
C:\dev>python ivcoltest.py

\\
32 32 09 d5 40 66 fc 03 c7 de 74 bbb e7 d7 45 9c i

Copyright 2010 InGuardians, Inc.

Outline

e Introduction
e Essential crypto skill development
e Applying crypto analysis

» Summary and conclusion

Conclusion

e Useful to build skill set for basic
crypto analysis

—Very little math required
e Stream ciphers and IV reuse
e Block ciphers and modes

e Walkthrough — IV collision and
known plaintext attack

&
Crypto w/o Math at the Summit ..

e More critical crypto skill development

e Tools you can use!

— Stuff from my previously-unreleased stash and
other public tools

— More data visualization examples
e More attack examples

— Database storage, HTTP cookies, standards-
based protocols

e Critical questions for your vendor's crypto
implementation

e Recommendations — where to go from here!

Copyright 2010 InGuardians, Inc.

Questions?

e Pen Test Summit 2010, June 14-15
— Baltimore, MD (Hilton across from Camden)

o Another awesome line-up this year

— Vinnie Liu, Dan Kaminsky, HD Moore, Jonathan
Ham, Paul Asadoorian, Jeremiah Grossman,
Joshua Wright, Larry Pesce, Jabra, Johnny
Cache and morel

e Come for the content, attendee interaction,
networking and more!

O days left for early-bird sign-up savings of $350!
www.sans.org/pen-testing-summit-2010

Copyright 2010 InGuardians, Inc.

